Q	uesti	on	er	Marks	Guidance
1	(a)	(The H ⁺ OR hydrogen ions OR protons in (sulfuric) acid have been replaced by ammonium ions OR NH ₄ ⁺ ✓	1	ALLOW 'a positive ion' for 'ammonium ions' BUT IGNORE 'a positive metal ion' OR 'metal ions' for 'ammonium ions' IGNORE references to being produced by the reaction of an acid and a base DO NOT ALLOW hydrogen atoms OR ammonia ions DO NOT ALLOW 'H for H ⁺ OR NH ₄ for NH ₄ ⁺
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 0.104 (mol) award 3 marks Amount of $H_2SO_4 = 0.100 \times 32.5/1000 = 3.25 \times 10^{-3}$ OR	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF for amount of $H_2SO_4 \times 2$
			0.00325 mol \checkmark Amount of NH ₃ = (mol of H ₂ SO ₄) × 2 = 6.50 × 10 ⁻³ OR 0.0065 mol \checkmark		ALLOW ECF for amount of $NH_3 \times 400 / 25.0$
			No. of mol of $NH_3 = (mol of NH_3) \times 400 / 25.0 = 0.104$ (mol) \checkmark		ALLOW concentration approach for marking point 3 Conc ammonia = $6.50 \times 10^{-3} \times 1000 / 25.0 = 0.260 \text{ mol dm}^{-3}$
					mol of NH_3 = (conc of NH_3) × 400 / 1000 = 0.104 (mol) ALLOW calculator value or rounding to 2 sig figs or more
	(b)		Predicted bond angle 107° ✓	4	BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2ALLOW range 106–108°
			<i>Explanation</i> There are 3 bonded pairs and 1 lone pair ✓		ALLOW a response which is equivalent to 3 bp and 1 lp, eg 'There are four pairs of electrons. One is a lone pair' ALLOW 'bonds' for 'bonded pairs' ALLOW diagram showing N atom with 3 dot-and-cross bonds and 1 lone pair clearly drawn onto it for second mark IGNORE stick versions of bonding
			Electron pairs repel ✓ Lone pairs repel more than bonded pairs ✓		DO NOT ALLOW 'atoms repel' for 'electron pairs repel' IGNORE 'electrons repel' ALLOW 'bonds repel'

Q	uesti	on	er	Marks	Guidance
1	(c)	(OH⁻✓	1	Correct charge must be seen ALLOW OH [−] if seen as the ONLY negative product of an equation
		(ii)	$N_2H_5^+ $ OR $N_2H_6^{2+} \checkmark$	1	ALLOW $H_2N-NH_3^+$ OR $H_3N-NH_3^{2+}$
	(d)	(CI goes from (+)1 to −1 ✓	3	ALLOW 1(+), 1–. Only look for oxidation numbers seen above or below equation if not seen in text IGNORE CI [−] CI ⁺ DO NOT ALLOW If a second species is seen going down in oxidation number with the exception of N going from -3 to -4
			N goes from –3 to –2 ✓		ALLOW 3 –, 2 –. Only look for oxidation numbers seen above or below equation if not seen in text IGNORE N^{3-} N^{2-} DO NOT ALLOW If a second species is seen going up in oxidation number
			C <i>I</i> is reduced AND N is oxidised ✓		ALLOW ECF for oxidation of any species showing an increase in oxidation number AND for reduction of any species showing a decrease in oxidation number IGNORE references to electron loss OR gain
					ALLOW 3 marks for labelled equation such as below
					$2NH_{3} + NaCIO \rightarrow N_{2}H_{4} + NaCI + H_{2}O$ $- + -$ $loxidation$ $reduction$
		(ii)	sodium chlorate(I) ✓	1	ALLOW sodium chlorate I (ie no brackets) ALLOW sodium hypochlorite IGNORE bleach DO NOT ALLOW sodium chlorate (with no Roman numeral)
		(iii)	$N_2H_4 + 2NH_2CI \rightarrow 2NH_4CI + N_2 \checkmark \checkmark$	2	One mark for N_2 One mark for NH_4C AND balancing
-			Total	16	

C	uestion	Answer	Mark	Guidance
2	(a)	Rb-87 has (two) more neutrons ✓	1	 ALLOW Different numbers of neutrons ALLOW 2 neutrons ALLOW Rb-85 has 48 neutrons AND Rb-87 has 50 neutrons IGNORE correct references to protons and electrons DO NOT ALLOW incorrect references to protons and electrons
	(b)	 The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) ✓ compared with 1/12th (the mass) ✓ of (one atom of) carbon-12 ✓ 	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope' For second AND third marking points ALLOW compared with (the mass of) carbon-12 which is 12 ALLOW mass of one mole of atoms ✓ compared to 1/12th ✓ (mass of) one mole OR 12 g of carbon-12 ✓ ALLOW mass of one mole OR 12 g of carbon-12 ✓
	(c)	$\frac{(85.00 \times 72.15) + (87.00 \times 27.85)}{100} =$ OR 61.3275 + 24.2295 OR 85.557 \checkmark A _r = 85.56 (to 2 decimal places) \checkmark	2	ALLOW two marks for correct answer $A_r = 85.56$ (with no working) ALLOW one mark for ECF from seen incorrect sum provided final answer is between 85 and 87 and is to 2 decimal places, e.g. 85.567 gives ECF of 85.57 for one mark

C	Quest	ion	er	Mark	Guidance
2	(d)		Spherical OR sphere ✓	1	DO NOT ALLOW 'circular'
					IGNORE unlabelled 2-D diagrams
	(e)	(i)	$Sr^+(g) \rightarrow Sr^{2+}(g) + e^- \checkmark$	1	ALLOW e for electrons
					ALLOW $Sr^+(g) - e^- \rightarrow Sr^{2+}(g)$
					DO NOT ALLOW $Sr^+(g) + e^- \rightarrow Sr^{2+}(g) + 2e^-$
					IGNORE state symbols for electrons
	(e)	(ii)		3	Use annotations with ticks, crosses ECF etc. for this part
			Sr has one more proton		Comparison should be used for each mark
			OR greater nuclear charge ✓		
					ALLOW Sr has more protons ALLOW 'across the period' for
					'Sr'
					IGNORE 'atomic number increases', but ALLOW 'proton
					number' increases
					IGNORE 'nucleus gets bigger'
					'Charge increases' is insufficient
					ALLOW 'effective nuclear charge increases' OR 'shielded
					nuclear charge increases'
					Quality of Written Communication – Nuclear OR proton(s)
					OR nucleus spelled correctly ONCE for the first marking point
					ALLOW shielding is similar
			(Outermost) electrons are in the same shell		ALLOW screening for shielding
			OR (outermost) electrons experience same shielding		IGNORE sub-shells
			OR Atomic radius of Sr is smaller ✓		DO NOT ALLOW 'distance is similar'
			Sr has greater nuclear attraction (on outer electrons /		ALLOW 'greater nuclear pull' for 'greater nuclear attraction'
			outer shell/s)		DO NOT ALLOW 'nuclear charge' for nuclear attraction
			OR the (outer) electrons are attracted more strongly (to the nucleus) ✓		ORA throughout

(Quest	ion	er	Mark	Guidance
2	(e)	(iii)	2nd IE of Rb involves removing electron from shell closer to nucleus ✓	2	IGNORE new shell ALLOW There is one shell fewer in Rb(⁺) (than Sr ⁺) ALLOW Rb(⁺) has a smaller radius (than Sr ⁺) ALLOW Rb(⁺) loses an electron from the 4th shell AND Sr(⁺) loses an electron from the 5th shell.
			Strong er nuclear attraction on (outermost electron) of Rb OR (outermost electron) of Rb experiences less shielding ✓		 ALLOW responses which do not specifically say 'nuclear' attraction (e.g. Rb has greater attraction) as long as nucleus is seen in first point A comparison of Rb to Sr must be used, e.g. 'Because of shielding' is not enough ORA
			Total	13	

3 (a)		mol of $H_xA = 25.00 \times 0.0500$ = 1.25 × 10 ⁻³ OR 0.00125 mol \checkmark	1	ALLOW 0.0013 OR 1.3 × 10 ⁻³
	(;;)			
	/::)	1000		ALLOW correct answer only without working
	(ii)	mol of NaOH =	1	ALLOW correct answer without working
		$\frac{12.50 \times 0.200}{1000} = 2.5(0) \times 10^{-3} \text{ OR } 0.0025(0) \text{ mol } \checkmark$		
	(iii)	Answer 2a(ii) rounded to nearest whole number ✓ Answer 2a(i)	1	ALLOW answer without working if answers to 2a(i) AND 2a(ii) are seen
		If 2a(i) and 2a(ii) are correct this will be $x = \frac{2.50 \times 10^{-3} \text{ mol}}{1.25 \times 10^{-3} \text{ mol}} = 2$ OR H ₂ A		DO NOT ALLOW responses without seeing answers in 2a(i) AND 2a(ii)
(b)) (i)	$\frac{\text{HNO}_3 \checkmark}{\text{CuO} + 2\text{HNO}_3 \rightarrow \text{Cu(NO}_3)_2 + \text{H}_2\text{O} \checkmark}$	2	IGNORE state symbols ALLOW correct multiples
	(ii)	(Electrostatic) attraction between oppositely charged ions ✓	1	Attraction is essential IGNORE references to metal and non-metal
	(iii)	lons are mobile OR ions can move ✓	1	IGNORE 'free ions' IGNORE 'delocalised ions' IGNORE ions can move when molten IGNORE charge carriers DO NOT ALLOW Any mention of electrons moving ALLOW ions move when in a liquid IGNORE responses which give liquid ions
	(iv)	(+) 5 ✓	1	ALLOW V

C	Question	Answer	Mark	Guidance
3	(c)	Cu(NO ₃) ₂ •6H ₂ O ✓	1	ALLOW $Cu(NO_3)_26H_2O$ ALLOW $Cu(NO_3)_2(H_2O)_6$ ALLOW $Cu(NO_3)_2.6H_2O$ DO NOT ALLOW $CuN_2O_6\bullet 6H_2O$
		Total	9	

C	luest	ion	Answer	Mark	Guidance
4	(a)		Used to neutralise acidic soils ✓	2	ALLOW raises the pH of the soil IGNORE references to fertilisers
			Excess will result in soils becoming too alkaline (to sustain crop growth) ✓		ALLOW pH becomes too high IGNORE 'harmful' IGNORE 'corrosive'
	(b)	(i)	$0.00131 \times 40.1 = 0.0525 \text{ g OR} 5.25 \times 10^{-2} \checkmark$	1	ALLOW 0.053 OR 0.05253 OR 0.052531 g IGNORE 0.05 if correct answer seen in working DO NOT ALLOW 0.052 OR 0.0524
		(ii)	$0\ 00131 \times 24.0 = 0.0314 \ \text{dm}^3$ OR $3.14 \times 10^2 \checkmark$	1	ALLOW 0.031 OR 0.03144 dm ³ IGNORE 0.03 if correct answer seen in working DO NOT ALLOW 31.4
		(iii)	✓ Mol of OH ⁻ ions in 1 dm ³ = $0.00262 \times \frac{1000}{1000} = 0.0105$ mol dm ⁻³ 250 ✓	2	ALLOW 0.0026 ALLOW 0.01048 OR 0.01(0) ALLOW ECF from incorrect mol of OH [−] DO NOT ALLOW 2nd mark as ECF if 0.0525 is used as no of mol of OH [−] ions DO NOT ALLOW 2nd mark as ECF if 0.0314 is used as no of mol of OH [−] ions 0.00524 mol dm ⁻³ is a likely ECF as a result of not multiplying 0.00131 by 2, but 0.00131 must be seen in working
	(c)	(i)	Fewer moles of Ba (in 0.0525 g) OR Fewer atoms of Ba (in 0.0525) ✓	1	ORA Assume candidate is referring to Ba if not stated IGNORE A_r Ba > A_r Ca
		(ii)	Idea of Ba having a quick er rate OR more vigorous reaction ✓	1	ALLOW more exothermic OR gets hotter OR fizzes more Assume candidate is referring to Ba if not stated Comparison is essential IGNORE 'Ba more reactive' ORA
			Total	8	

Q	uesti	on	Expected Answers	Marks	Additional Guidance
Q 5	uesti (a)	on	Expected Answers Mass of the isotope compared to 1/12th OR mass of the atom compared to 1/12th ✓ (the mass of a) carbon-12 OR ¹² C (atom) ✓	Marks 2	Additional Guidance IGNORE Reference to average OR weighted mean (i.e. correct definition of relative atomic mass will score both marks) ALLOW mass of a mole of the isotope/atom with 1/12th the mass of a mole OR 12 g of carbon-12 for two marks. ALLOW 2 marks for: 'Mass of the isotope OR mass of the atom compared to ¹² C atom given a mass of 12.0' i.e. 'given a mass of 12' OR C12 is 12 communicates the same idea as 1/12th.' ALLOW 12C OR C12 ALLOW 2 marks for:
					DO NOT ALLOW mass of 'ions' OR mass of element
	(b)		$\frac{(151 \times 47.77) + (153 \times 52.23)}{100}$ OR 72.1327 + 79.9119 OR 152.0446 (calculator value) \checkmark $A_r = 152.04 \checkmark$	2	ALLOW Correct answer for two marks ALLOW One mark for ECF from transcription error in first sum provided final answer is to 2 decimal points and is to between 151 and 153 and is a correct calculation of the transcription

Question	Expected Answers	Marks	Additional Guidance
(c) (i	 ¹⁵³Eu has (2) more neutrons OR ¹⁵³Eu has 90 neutrons AND ¹⁵¹Eu has 88 neutrons ✓ 	1	ALLOW There are a different number of neutrons IGNORE Correct references to protons / electrons DO NOT ALLOW Incorrect references to protons / electrons
(i	 (It has the) same number of protons AND electrons OR Both have 63 protons and 63 electrons ✓ 	1	ALLOW Same number of protons AND same electron configuration DO NOT ALLOW 'Same number of protons' without reference to electrons (and vice versa)

Question	Expected Answers	Marks	Additional Guidance
(d)	Xe has a bigger atomic radius OR Xe has more shells ✓	3	ALLOW Xe has more energy levels ALLOW Xe has electrons in higher energy level ALLOW Xe has electrons further from nucleus IGNORE Xe has more orbitals OR more sub-shells DO NOT ALLOW 'different shell' or 'new shell'
	Xe has more shielding ✓		ALLOW More screening There must be a clear comparison ie more shielding OR increased shielding. i.e. DO NOT ALLOW Xe 'has shielding' ALLOW Xe has more electron repulsion from inner shells
	The nuclear attraction decreases OR Outermost electrons of Xe experience less attraction (to nucleus) OR Increased shielding / distance outweighs the increased nuclear charge ✓ ORA throughout		ALLOW Xe has less nuclear pull IGNORE Xe has less effective nuclear charge DO NOT ALLOW nuclear charge for nuclear attraction
	Total	9	

Qı	Question		Expected Answers	Marks	Additional Guidance
6	(a)	(i)	The H ⁺ ion in an (nitric) acid has been replaced by a metal ion OR by a Ca ²⁺ ion ✓	1	 DO NOT ALLOW it has been produced by the reaction of an acid and a base as this is stated in the question. IGNORE references to replacement by NH₄⁺ ions or positive ions. ALLOW H OR Hydrogen for H⁺; DO NOT ALLOW Hydrogen atoms ALLOW Ca OR Calcium for Ca²⁺. DO NOT ALLOW Calcium atoms ALLOW 'metal' for 'metal ion
		(ii)	$2HNO_3(aq) + Ca(OH)_2(aq) \rightarrow Ca(NO_3)_2(aq) + 2H_2O(I)$ Formulae \checkmark Balance AND states \checkmark	2	ALLOW multiples ALLOW (aq) OR (s) for Ca(OH) ₂
		(iii)	Accepts a proton OR accepts H ⁺ ✓	1	ALLOW H ⁺ + OH ⁻ \rightarrow H ₂ O ALLOW OH ⁻ reacts with H ⁺ OR OH ⁻ takes H ⁺ ALLOW OH ⁻ 'attracts' H ⁺ if 'to form water' is seen DO NOT ALLOW OH ⁻ neutralises H ⁺ ('neutralises' is in the question)
	(b)	(i)	Calculates correctly $0.0880 \times 25.0 = 2.20 \times 10^{-3} \text{ mol} \\ 1000 \text{ OR } 0.00220 \text{ mol } \checkmark$	1	ALLOW 0.0022 OR 2.2 × 10 ⁻³ mol
		(ii)	Calculates correctly $0.00220 = 1.10 \times 10^{-3} \text{ mol}$ 2 OR 0.00110 mol \checkmark	1	 ALLOW 0.0011 OR 1.1 × 10⁻³ mol ALLOW ECF for answer (i)/2 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes
		(iii)	$0.00110 \times 1000 = 0.0625 \text{ mol dm}^{-3}$ 17.60 OR 6.25 × 10 ⁻² mol dm ⁻³ ✓	1	ALLOW 0.063 OR 6.3 × 10 ⁻² mol dm ⁻³ ALLOW ECF for answer (ii) × 1000/17.60 OR ECF from (i) for answer (i)/2 × 1000/17.60 as calculator value or correct rounding to 2 significant figures or more but ignore trailing zeroes

(c)	(i)	(The number of) Water(s) of crystallisation \checkmark	1	IGNORE hydrated OR hydrous
	(ii)	$142.1 \checkmark$ $x = (322.1 - 142.1) = 10 \checkmark$ 18.0	2	 ALLOW 142 ALLOW M_r expressed as a sum ALLOW ECF from incorrect M_r and x is calculated correctly ALLOW ECF values of x from nearest whole number to calculator value ALLOW 2 marks if final answer is 10 without any working
		Total	10	